
page:1

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

 Silly /Dave presents : 2nd edition

Your first goto book for of a lot of useless jibber jabber chit-chat with no real down to earth goal.

 “What utter garbage” - Craig of Craigslist, Sep 1993.
“…the author could not construct a sentence if he had to.” – Bishop, Aliens, 1986.
“Filth. Absolute filth” – Sally, last Tuesday evening on the second picnic table over in the RSL park

INDEX

 0. Basics intro
The Quicky Summary
Example 1: First example of BASIC TO ASM. “Hello Worldings”
Example 2: Variable movements.
Example 2.1: Variable movements (more of)
Example 3: Looping.
Example 4: Looping and printing.
Example 5: Sound
Example 6: Waiting for the keyboard. - Keyboard input
Example 7: Assembling directly to .VZ snapshot.

1. X
2. Chaos
3. Squiggly
4. Matrix
5. Maze

page:2

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

This book has no end goal. Therefore there is little point in reading any of this. There isn’t much of an
intro, and there isn’t much of an ending. “Assembly!” The final frontier. No, wait, that was Star Wars or
Jedi Trek the 13th something. Learning and being confident in assembly I always thought was not ever
possible. Guess what, it isn’t. I’m getting there though. Writing cool little routines in BASIC and then
being able to convert them into Z80 assembler is a horrible experience for the wife, but most enjoyable
for someone with utterly no life and whom has great delight in seeing a slow moving SET(X,Y) pixel in
BASIC, move so quickly in ASM that you can’t see it. That really has to be the highlight – seeing slow
routines sped up hundreds of times within ASM. And then having the proud ego of loudly saying to no-
one in particular “I wrote that”. Moving on; This booklet has not an ounce of seriousness to it anywhere.
It was written with love by a Circus lover. Hopefully you, the reader may even be here by now if you
haven’t already given up reading. All of these examples are written for the PASMO assembler which I
have a slight preference to now over good old TASM. PASMO and SJASM / SJASMPLUS are the choice of
assembler of the cool people these days. You need to become one of them even if it is just for one day.
Obviously different assemblers require the overall structure to be a little bit different than the next. Eg
TASM is fairly strict in its layout, PASMO seems a bit more relaxed in the layout. And SJASM couldn’t
care less what the structure is – it will just assemble whatever it is given.

TASM needs hex written out in form of $FF. SJASM and PASMO are happy with #FF or $FF.
TASM needs an END at the end of the listing. SJASM and PASMO couldn’t care less.
TASM wants directives as .ORG .END .EQU .DEFB
PASMO prefers ORG, END, EQU, DEFB
SDJASMplus couldn’t care less. It will accept anything and everything.

Study the commented listings and try them all out if you can be bothered. They were all assembled with
pasmo, and should work on first assemble for you , dependant on typo’d.
With all assemblers, you either need to (1) add the .CVZ or .VZ header directly to within the asm listing.
I personally do not know the .CVZ (cassette) file format, and therefore can not provide this info.
.VZ file header will be shown elsewhere in this documentation. Or , (2) assemble without the header to
an object file, and then use RBINARY.EXE to add the .VZ snapshot header to the object file, thusly
creating a final .VZ snapshot file. Another alternative is to use Gavin’s VZ Assembler8 GUI IDE to
assemble directly to a .CVZ file output.

The Quicky Summary :
Z80 asm has a bunch of 1 byte and 2 byte combined registers. 8 bit (1 byte) registers are : A, B, C, D,
E, F, H, L, I, PC, R, IXH, IXL, IYH, IYL. And then there are a bunch of these registers in duplicate form
that can only be accessed at a certain time. They are A’, B’, C’, D’, E’, F’, H’, L’, IXH’, IXL’, IYH’, IYL’.
All of these are good for storing numbers from 0 to 255. They are used for your everyday typical add,
sub, mul and division stuff. A is your everyday common register, B is typically for looping, C for counting
and summing, E another general all rounder, and F is a flags only, used after looping, comparing, for
jumping and the likes.

page:3

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

16 bit (2 byte) registers : AF, BC, DE, HL, IX, IY. BC for 16 bit loops, IX and IY for indexing, DE typically
as a destination and HL for a source – all dependant on the opcode commands of course. There is way
more to it all than this, but this is just the quick basics after all, and I am probably the worst person on
this planet to attempt to clearly explain it all.
No doubt the majority of people over the earlier 1980’s and 1990’s years have gone from learning Z80
assembly and then moved on to Intel 80x86 assembly. Having done the reverse, learning up to ‘386
assembly and studying and playing with it for ten years, then moving to Z80, it was certainly a smooth
and very easy transition, and I somewhat recommend it as it is fully choice.

Example 1 : First example of BASIC TO ASM
10 CLS
20 PRINT “HELLO WORLD”

Within the ROM, there are tens and tens, if not a hundred plus routines all sitting there, used everyday
via the normal BASIC tokens that are first interpreted and then these routines-in-rom are called. All of
them are accessible direct from asm. Be aware though that even though they were written a hundred
years ago by people, whom may have done on it a Friday afternoon. Meaning there may be a faster
routine possible than what is embedded in silicon. We use the ROM routines coz they are there, and
typically work well. CLS is at offset $01C9 in the ROM. Calling this, and you will clear the screen.
The Print String function is at offset $28A7. Point HL register to your string, call $28A7, and you have
written your string.

To convert the above program, we’d start by using an ASM listing template or from scratch if you know
the structure from off the top of your head.

If you were to type this in, assemble it with PASMO, then RBINARY it, you would have a FILE.VZ
Running in on a real VZ or an emulator will do exactly that : Print “HELLO WORLD’ on to the screen and
then loop for ever. If we removed the loop-forever, the program would continue to execute the
instructions that form the string H E L L O W O R L D etc.(which does very little), and then continue
into the unknown contents of memory after this. Trying this now simply shows that the program
continuously shows Hello World, crashes, clears the screen, displays HELLO WORLD again, on a vicious
continuous loop. What happens all depends on what the processor attempts to execute in memory. Or,
of course, with the correct byte sequence in place, it would run “CIRCUS 2, The Penguins Revenge!”
game.

page:4

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

Example 2: variable movements.
10 LET A=1 : LET B=2 : LET C = 3 : LET D = A + B

page:5

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

Example 2.1: variable movements (more of)
10 LET A=1 : LET B=2 : LET C = 3 : LET D = A + B
20 PRINT A;B;C;D;
30 END

Here we are using a simple old trick to change the value in a register to a printable numeric character.
By OR'ing a single value with 30 hex (48 decimal), we change the value of, say, 7 to the character $37
(55 decimal) which is the alpha-numeric character '7'. This makes it nice and simple for things like
additions or something like a game score when we go to print the value to screen. Imagine if you will a

page:6

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

game score of value of 7. When this is printed to the screen, ie, PRINT CHR$(7), on the old ASCII table,
it will attempt to display the Audible BELL character (beep) on most computers other than the VZ. The
VZ doesn't do anything. PRINT CHR$(7); CHR$(7); on a Microbee or an Apple][will go beep beep. This
is not ideal, therefore we do the OR, change the value into a printable character, and then display it.

Example 3: Looping. 10 FOR B = 1 TO 100 : NEXT I

Looping is fairly straight forward, and, looping of 8 bit values is incredibly easy to achieve in the world of
assembly. The easiest method is to set a value to Register B and to use the DJNZ op-code. This is an
automated loop that automatically decrements one from the current value of B. It then does an IF
statement whereby if B <> 0, then jump back and loop through again. If B=0, the condition is set, the
Zero flag is set, and the jumping at the DJNZ op-code loopy thing falls through, and code continues on.
Yes, the ASM example given below is going backwards from 100 to 1 instead of the wanted BASIC
example of going from 1 to 100. The slightly longer but correct 1 to 100 method is shown in example 2.

page:7

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

Exampe 4: Looping and printing.
10 FOR I = 1 TO 99 : PRINT I; NEXT I

There are a few ways to demonstrate this method of looping and then performing a value-to-character
conversion for printing. I am going to demonstrate a dumb method. Using a register for each size-width
of the value. Meaning, we are counting from 0 to 99 , so we use a width of two characters. So , very
badly, we are going to use register H for the TENS (left hand value), and register L for the single units.
We will loop from 1 to 99, or by using the B / DJNZ counter we will actually set the Loop count to 99
and count back to 1. We'll start counting from 1 to 9 in register L, an then compare the L register value
with 10. If L=10, we reset L back to zero, and then add one to the TENS value, being register H. If L is
not equal to 10 yet, we ignore the reset & increment-H-register. Then decrement one from B register
and jump back to the start of the loop for another round. Very inefficient, but can clearly show how to
go about setting up a two width counter.
In the past I have written some very bad code using this exact method. I don't care.

Example 5 – Sound
Rom call $345C is the VZ’s sound. Load up HL as the frequency and BC the duration length, call the call,
and we have the theme to Star Wars. Darth Vader’s entrance music all came from a VZ. True story.

LD HL, note
LD BC, duration
CALL $345C

 BASIC Assembly HL value
Low C SOUND 4,1 526 decimal
Middle C SOUND 16, 1 259 decimal
High C SOUND 28,1 127 decimal

Below are two examples, each will play seven individual notes, the user presses <S>, and then a short
tune plays. Both examples show how music can be written out in ASM for the VZ. The first example
shows how music can be achieved using the sound routine in the VZ's ROM, whilst the second listing

page:8

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

shows how we can achieve the same thing by not using the ROM routine, and writing our music data
directly to the memory address latch, which is physically linked to the piezo speaker with copper tracks
on the motherboard. The memory address latch is located at $6800. It is actually a 2k chuck of your
memory addressing space and takes in all memory addresses from $6800 through to $6FFF. Why so
large? Rhetoric question here coz I simply don't know the answer. I’m going to guess that there has
been way less than 1k of addressing that has ever been used by everyone combined together.
A copy of the address latch of $6800 (26624 decimal) also sits in memory at 30779 - which should be
rightly used for "last speaker state" when playing 1-bit audio music. 30779 is a POKE number that has
been around since forever and would be one of the more famous ones for its use.

page:9

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

One last quick thing to note is the speed between the two listings. You can easily hear the difference
between the first listing using the direct sound routine and the second listing using the ROM call. The
second listing sounds slower - this is due to the extra overheads in calling the ROM routine, and once
you are in there, there are further stack commands which slow things down enough that you can
actually hear this in the sound pitch and duration,

The first listing is also done a bit dodge-ly. It is essentially using the pitch as a duration loop to set the
tone. What is tone anyway? The quickness of the vibration isn’t it?. The quicker the vibration the higher
the tone, right? We are using the pitch in the first and second DJNZ $ loops to adjust the timing that we
are sending of bits 0 and 5 to the $6800 address. We then set the actual duration length of the note
further in a separate delay. Performing this routine quick enough and with the right values, yes, yes you
can have star wars theme playing from your piezo speaker. But this 1-bit audio is beyond this book.

page:10

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

Example 6: Waiting for the keyboard. - Keyboard input

In C (Z88dk) one would use this kind of generic code for keyboard input.
if(inch()=='0') { printf("You pressed <0>" ;}
if(inch()=='1') { printf("You pressed <1>" ;}
if(inch()=='2') { printf("You pressed <2>" ;}
if(inch()=='3') { printf("You pressed <3>" ;}
if(inch()=='4') { printf("You pressed <4>" ;}
if(inch()=='5') { printf("You pressed <5>" ;}

We've found though that the VZ's inch() code can be a little buggy some times, and reading directly
from the latch is a far better method of getting a near 100% accuracy keyboard read.

if((mem[0x68ef] & 0x10) == 0) { printf("You pressed <space>";}
if((mem[0x68fd] & 0x1) == 0) { printf("You pressed <G>";}
if((mem[0x68fd] & 0x2) == 0) { printf("You pressed <S>";}
if((mem[0x68df] & 0x10) == 0) { printf("You pressed <0>";}
if((mem[0x68f7] & 0x10) == 0) { printf("You pressed <1>";}
if((mem[0x68f7] & 0x2) == 0) { printf("You pressed <2>";}
if((mem[0x68f7] & 0x8) == 0) { printf("You pressed <3>";}
if((mem[0x68f7] & 0x20) == 0) { printf("You pressed <4>";}
if((mem[0x68f7] & 0x00) == 0) { printf("You pressed <5>";}
if((mem[0x68fb] & 0x04) == 0) { printf("You pressed <LEFT SHIFT>";}

This is essentially the keyboard table with the appropraite memory locations. Taken straight from the
reference manual.

This leads to a very simple read conversion to asm for the VZ.

Read in a memory location, say, $68F7.
Mask register A with the corresponding hex value up the top of the table for the KEY that we are after.
As an example, $8 for the <3> key. Depending on the masking, the flag will either be set or not set,
and by using this we can then do something dependant on if the key was pressed or not.

page:11

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

 LD A, ($68F7) ; read in memory location of the 4,1,3,2,5 key row.
 AND $08 ; mask and test for the correct value
 ; Does Register A = 8 ?
 JR Z, jump_here ; flag was set if <3> was pressed. Do the Jump!
 … ; else, <3> was not pressed, continue on doing other stuff
Jump_here: ; do stuff here coz <3> key was pressed,

The VZ's ROM also, of course, has a keyboard scanning routine at $2EF4 which is used upon each and
every time you press a key on the VZ's keyboard, be it in BASIC or line entering in ASM. This routine just
runs nice and silently in the background. Within BASIC, the key-presses are then sent on to other parts
to display , accept a line entry or some value that is inputted.

As shown in the Technical Reference manual, the ROM routine is also reasonably simple to use.

page:12

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

key: CALL $2EF4 ; call the ROM routine.
 OR A ; test reg A with 0. If a key is pressed it will return a value anything but 0
 JR Z, key ; If Reg A = 0, then no key was pressed, Jump again for another scan.
 ; Essentially, we wait until a key is pressed.
 CP $D ; 13 decimal. ASCII value of <CR>. Compare register A with 13.
 JR Z, do_return ; We jump if it is a match. <ENTER> has been pressed.
 CP $41 ; 65 decimal. ASCII value of the letter A, also the pressing of key <A>
 JR Z, do_a ; Jump if <A> key was pressed.
 CP $42 ; 66 decimal. ASCII value of the letter B, also the pressing of key
 JP key ; We jump again looking for a key pressed, and then if it is <ENTER> or
<A>

do_return:
 …
do_a:
 …

Example 7 : Assembling directly to .VZ snapshot.

Purist's will skip this part, as the .VZ snapshot file format is a hack and nothing more than a hack. And
rightly so. It was created by Brian Murray way back in the early days just to get something to work , and
a such, from whichever side of the fence you are on, has stuck and has been pretty much the majority
standard for VZ snapshots, be it good or bad.

Unfortunately I have no documentation on the more formal and proper file method being the ".CVZ"
cassette file format, of which, MAME (I think?), DSVZ200 and JVZ200 emulators use. So in this
section, we will quickly look at how to assemble a listing to the .VZ file snapshot.
There are two methods, either including the 23 bytes of the .VZ header into your own assembly listing,
and assembling or compiling the lot into a direct outputted machine code object code that is the .VZ
snapshot.

Or, by assembling a generic Z80 listing to object code, then running the Wintel executable file
"RBINARY.EXE" (created by Brian or Guy Thomason years ago), which simply amends the .VZ file
header to the machine code object file, and spits out the resulting .VZ snapshot file that all known
emulators do read.

RBINARY.EXE utility can be found on most good VZ200 It can also be found in the files section of the
VZ/Laser Facebook group. You will need to rename it. Worse case scenario, email the author for it.

; Code for .VZ snapshot header.

 defb 'VZF0'
 defb 'AGDGAME ' ; 16 spaces for filename.
 defb $f1
 defb $00 ; lb $7B00
 defb $7B0 ; hb $7B00
 org $7B00

page:13

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

page:14

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

METHOD 1
Listing that shows how to include the .VZ file header into the original source file.

Saving this as TEST.ASM and using SJASMPLUS you'd simply do a :
SJASM TEST.ASM

METHOD 2 – using Rbinary utility

Again, saving this as test.asm, you would perform the following :
PASMO TEST.ASM TEST.OBJ
RBINARY TEST.OBJ TEST.VZ

page:15

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

This particular example originally came about from the C64 Twitter crowd where a small competition
started to display an X on the screen with the smallest code. This particular example is a little different
to the other examples, in that, this was written in assembler to begin with, and in order to recreate a
basic-to-asm example, the basic code had to be written from the asm listing.

We can’t use PRINT@ here since upon trying to print in the lower bottom right hand corner, the VZ
always will want to add a <CR> which is normal, but for our purpose it wrecks the final display. There is
no way around this as far as I know when using PRINT@; …so we use POKE.
We first need two variables, one for each line. There are 16 lines in height, in which each iteration we
need to display a ‘top’ graphic block, then a ‘bottom’ block for line 1 (L to R), and the reverse for line 2
(R to L). We then add the width of the screen to both variables to go down to the next line. HL can
become line 1 and DE line 2. Can use B for the DJNZ loop. The tricky part in this first asm attempt is
that , in the lower section, we really want to do a ADD HL, 32 and ADD DE, 32. Z80 asm doesn’t allow
for this, so we need to get creative to do our additions. It is a bit of a mess, however the comments are
reasonably clear.

page:16

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

Note that with the For-To-Next loop in the comments is not quite correct. It is showing you essentially
the loop, (setting up variable B here), however note that the ending DJNZ LOOP jumps back to the label
LOOP. Not back to the LD B, 16. This is important, as the BASIC comments will not work exactly as they
are. The FORB=16TO1STEP-1 should be with the LOOP label, since that is where the corresponding
DJNZ jumps back to.

Second attempt, we move things into 8 bit registers where we can since 16 bit isn’t all that necessary in
this example, and does allow for some simpler adding. It can also reduce our overall code size. The
below is just included to show that things can be further improved on the code size of things.

page:17

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

This page intended to leave BANK (….worded just like the VZ DOS Manual)

page:18

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

Chaos is actually Serpinksi's Gasket or Triangle. Chaos is a true love of mine. It was given to me as an
Apple][e BASIC listing by my computer teacher in, perhaps, 1988 era in high school. I ran with it!! I
had it typed in and running on the Apple by lunch time and I was gob-smacked (after waiting minutes
and minutes). Then over on to the VZ it was. Few years later (about six) I had it running nicely in
320x200 VGA on the PC in Turbo Pascal. At the time I was learning assembly on the PC and after a long
time, I managed to get it running nicely from an original 2000 bytes of dribble, down to 100 bytes, and
after a few more years finally got it running at 62 bytes. It was even entered in as a demo for a 64 byte
assembly demo competition. Then along came a very simple 23 byte algorithm that just blew mine out
of the water - but that’s another story

I played with this for ages, days / months / years, animating it to fly around the screen, rotating it, and
changing shades of colour. Somewhere along the way I played with the randomness, creating a
replication of Serpinksi's Carpet, Serprinki's Dragon and Serprinki's Fractal Leaf. Its extraordinary how a
very simply random routine can create such beautiful designs - hence from the Chaos of random
numbers comes beauty.

Some very cluey folks have over the years created 256 byte VGA demo's that are 3D, flying through
Serpinki's cubed carpet in 3D as well as 3D Gasket as a 3D pyramid. These demos , although extremely
small in size (256 bytes) use Pentium math co-processor assembly code and self-building math tables
that would occupy perhaps megabytes of memory. Well beyond my league.
Years later I brought Chaos back over on to the VZ running in assembly, and thus, bringing my entire
story of Chaos back on its self.

We can produce the same pattern in C by using something similar - although it is a little rough around
the edges. It is much quicker of course, being compiled, than being interpreted by BASIC.

page:19

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

So, to bring this over into Z80 asm we need the following things :
 (0) A continuous forever loop,
 (1) Mode (1) enable and setting of initial default values.
 (2) Simply but effective random routine,
 (3) Addition routine,
 (4) Subdivision routine
 (5) Plotting pixels routine.

page:20

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

page:21

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

Rotating Serprinki’s triangle. Animated graphics.

It isn’t flash, and can be code-sized optimised greatly, and I’m getting to the point where I am starting
to be over this book and to move on to other things “Oh look, a shiny thing!”. So, the following listing
has very limited comments – not what I was originally planning. Anyhow, by performing dodgy loops
from 0 to 127 on (X,0), and then 0 to 63 on (127,Y), and then 127 to 0 on (X, 63), and then finally 63 to
0 on (0,Y), we cover the entire boundary of the mode(1) screen. If we then plot the three points of the
triangle to these outside boundary loops, we come out with a rough rotating real-time calculated
triangle. SIN(), COS() and TAN() are routines in ROM , and using these may be quick enough to draw a
proper real-time calculated object to rotate nice and clear and awesome looking, but… the author is not
quite there yet! Perhaps this might be available in Book 2. But I highly doubt it. Of course, the best
method is to use pre-calculated values in a big lookup table, or use a short routine at the start of your
program to calculate these tables and to auto-generate the SIN() or COS() table upon initial execution.
Then you can have proper circles and nice fancy smooth sine rhythm’s.

page:22

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

ORG $8000
 ld a,8 ; mode (1)
 ld ($6800),a
loop00: ld hl, $7000 ; MODE(1) CLS
 ld de, $7001
 ld a, 0
 ld (hl), a
 ld (de), a
 ld bc, 2048
 ldir
 ld hl, $9000 ; Screen Buffer
 ld de, $9001 ; At $9000
 ld a, 0
 ld (hl), a
 ld bc, 1048
 ldir
 ld bc, 1048
 ldir
go: ld ix, 63
 ld iy, 63
 ld a, 0 ; part 0
 ld (x1), a
 ld (y1), a
 ld (y2), a
 ld a, 127
 ld (x2), a
 ld a, 63
 ld (x3), a
 ld (y3), a
 ld b, 64
l1: push bc
 call chaos
 ld a, (x2)
 dec a
 ld (x2), a
 ld a, (y1)
 inc a
 ld (y1), a
 ld a, (x3)
 inc a
 ld (x3), a
 pop bc
 djnz l1
 ld b, 64 ; part 1
l2: push bc
 call chaos
 ld a, (x2)
 dec a
 ld (x2), a
 ld a, (x1)
 inc a
 ld (x1), a
 ld a, (y3)
 dec a
 ld (y3), a
 pop bc
 djnz l2
 ld a, 63 ; part 2
 ld (x1), a
 ld (y1), a
 ld a, 0
 ld (x2), a
 ld (y2), a
 ld (y3), a

 ld a, 127
 ld (x3), a
 ld b, 62
l3: push bc
 call chaos
 ld a, (y2)
 inc a
 ld (y2), a
 ld a, (x1)
 inc a
 ld (x1), a
 ld a, (x3)
 dec a
 ld (x3), a
 pop bc
 djnz l3
 ld a, 127 ; part 3
 ld (x1), a
 ld a, 63
 ld (y1), a
 ld (y2), a
 ld (x3), a
 ld a, 0
 ld (x2), a
 ld (y3), a
 ld b, 62
l4: push bc
 call chaos
 ld a, (x2)
 inc a
 ld (x2), a
 ld a, (y1)
 dec a
 ld (y1), a
 ld a, (x3)
 dec a
 ld (x3), a
 pop bc
 djnz l4
 ld a, 127 ; part 4
 ld (x1), a
 ld a, 0
 ld (y1), a
 ld (x3), a
 ld (y3), a
 ld a, 63
 ld (x2), a
 ld (y2), a
 ld b, 62
l5: push bc
 call chaos
 ld a, (x2)
 inc a
 ld (x2), a
 ld a, (x1)
 dec a
 ld (x1), a
 ld a, (y3)
 inc a
 ld (y3), a
 pop bc
 djnz l5
 ld a, 0 ; part 5
 ld (y1), a

page:23

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

 ld (x3), a
 ld a, 127
 ld (x2), a
 ld a, 63
 ld (x1), a
 ld (y2), a
 ld (y3), a
 ld b, 62
l6: push bc
 call chaos
 ld a, (y2)
 inc a
 ld (y2), a
 ld a, (x1)
 dec a
 ld (x1), a
 ld a, (x3)
 inc a
 ld (x3), a
 pop bc
 djnz l6
h3: jp h3
chaos: ld b, 20 ; Will loop 500+ times
 ld d, 2
chaos2: push bc
 push de
rand1 equ $+1
 ld a,$A6
rand2 equ $+1
 ld hl,$8243
 inc l
 dec h
 add a,(hl)
 ld (rand2),hl
 rlca
 rlca
 sub h
 add a,l
 ld (rand1),a
 cp 85
 jr c, next2 ; 0,0 -JMP BELOW
 cp 170
 jr nc, next ;-JMP ABOVE
 ld bc, (x2)
 add ix, bc ; 128, 0
 ld bc, (y2)
 add iy, bc
 jp calc
next: ld bc, (x3) ; (64, 63)
 add ix, bc
 ld bc, (y3)
 add iy, bc
 jp calc
next2: ld bc, (x1) ; (0,0)
 add ix, bc

 ld bc, (y1)
 add iy, bc
calc: ld a, iyl ; DIV IY /2
 srl a
 ld iyl, a
 ld h, a
 ld a, ixl ; DIV IX /2
 srl a
 ld ixl, a
 ld l, a
 ld c, 2
 sla l ; calculate screen offset
 srl h
 rr l
 srl h
 rr l
 srl h
 rr l
 and $03 ; pixel offset
 inc a
 ld b,a
 ld a,$fc
pset1: rrca
 rrca
 rrc c
 rrc c
 djnz pset1
 ld de, $7800
 add hl,de
 and (hl)
 or c
 ld (hl),a
 pop de
 pop bc
 djnz chaos2
 dec d
 jp nz, chaos2
 ld hl, $7800 ; BLIT FROM $7800
BUffer to screen
 ld de, $7000
 ld bc, 2048
 ldir
 ld hl, $9000 ; MODE(1) CLS
BUFFER at $9000
 ld de, $7800
 ld bc, 2048
 ldir
 ret
x1 defw 0
y1 defw 0
x2 defw 127
y2 defw 0
x3 defw 63
y3 defw 63

page:24

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

This quickie was done up for the 2020 ten-liner BASIC competition. After submitting it, thought I’d have
a go at converting it to assembly. Again, it is too lengthy for this book, but have shoved it in regardless.
I had planned to have it fully commented, but again, it isn’t going to happen.

0 B=29182:DIMA(13):FORI=1TO13:A(I)=28672+RND(14)*32+RND(32):NEXT
1 FORI=RND(3)TORND(3)+4:FORJ=1TORND(8):POKEA(I),RND(63)+64
2 NEXTJ,I
3 FORI=1TO7:IFA(I)<B,POKEA(I),RND(63)+64:A(I)=A(I)+32:NEXT:GOTO5
4 A(I)=28671+RND(32):NEXT
5 FORI=8TO12:IFA(I)<B,POKEA(I),96:A(I)=A(I)+32:NEXT:GOTO1
6 A(I)=28671+RND(32):NEXT:GOTO3

Line 0 : Set fall off screen location. Set array, clear screen. Set 13 entrys of array to be random locations

on the screen.
Line 1 : For the first random amount of entries, display a random amount of random characters on
 screen. This is the initial effect when The Matrix characters appear dripping down the screen.
Line 2: Can not fit on Line 1 unfortunately. And can not find enough space for a CLS..

ONLY ONE SINGLE MORE CHARACTER IS NEEDED!. I gave up looking further.
Line 3 : For the first seven entries that are on the screen, pick a random character and display it.

Increase the location on the screen by one line down. And do this 7 times for each entry.
If the location is on the screen then skip line 4.

Line 4 : This line will only be reached if a single entry's display location has dropped off / fallen
off the screen. So select a new screen location.

Line 5 : For the next six array entries if they are still on the screen, blank them out - make them light
green space for VZ300. And increase down to the following line. Do this six times, then jump

 back to line 1.
Line 6 : For each array entry that has fallen off the screen, pick a new screen location. Goto 3 since

there isn’t the need to add the fancy char display and all it does is add a small un-required delay.

page:25

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

; MATRIX VZ200
; ==============
;
 ORG $8000

 ld hl, $7000 ; CLEAR SCREEN
 ld de, $7001
 ld (hl), 32
 ld bc, 2048
 ldir
 di
line0: call load_1 ; BASIC Line 0
 ld (a1), hl
 call load_1
 ld (a2), hl
 call load_1
 ld (a3), hl
 call load_1
 ld (a4), hl
 call load_1
 ld (a5), hl
 call load_1
 ld (a6), hl
 call load_1
 ld (a7), hl
 call load_1
 ld (a8), hl
 call load_1
 ld (a9), hl
 call load_1
 ld (a10), hl
 call load_1
 ld (a11), hl
 call load_1
 ld (a12), hl
 call load_1
 ld (a13), hl
 call load_1
 ld (a14), hl
 jp here2

load_1: ld hl, $7000
 ld d, 0
 call random
 ld e, a
 add hl, de
 call random
 ld D, 0
 ld e, a
 add hl, de
 ret
here2:
line1: ld b, 55 ; BASIC Line 1 & 2
loop1b: call random63_2 ; select random char to display.
 ld de, (a1)
 ld (de), a
 djnz loop1b
 ld b, 55
loop2b: call random63_2
 ld de, (a2)
 ld (de), a
 djnz loop2b
 ld b, 85
loop3b: call random63_2
 ld de, (a3)
 ld (de), a
 djnz loop3b
 ld b, 120
loop4b: call random63_2
 ld de, (a4)
 ld (de), a
 djnz loop4b
 ld b, 50
loop5b: call random63_2
 ld de, (a5)
 ld (de), a
 djnz loop5b
 ld b, 5
loop6b: call random63_2

 ld de, (a6)
 ld (de), a
 djnz loop6b
 ld b, 50
loop7b: call random63_2
 ld de, (a7)
 ld (de), a
 djnz loop7b
line3: ld hl, (a1) ; BASIC Line 3
 ld ix, a1
 ld de, 29182
 rst $18
 jr c, loop8
 call line4
 jp line3a
loop8: call random63_1
 ld (a1), hl
; jp line5

line3a: ld hl, (a2)
 ld ix, a2
 ld de, 29182
 rst $18
 jr c, loop9
 call line4
 jp line3b
loop9: call random63_1
 ld (a2), hl
; jp line5
line3b: ld hl, (a3)
 ld ix, a3
 ld de, 29182
 rst $18
 jr c, loop10
 call line4
 jp line3c
loop10: call random63_1
 ld (a3), hl
; jp line5
line3c: ld hl, (a4)
 ld ix, a4
 ld de, 29182
 rst $18
 jr c, loop11
 call line4
 jp line3d
loop11: call random63_1
 ld (a4), hl
; jp line5
line3d: ld hl, (a5)
 ld ix, a5
 ld de, 29182
 rst $18
 jr c, loop12
 call line4
 jp line3e
loop12: call random63_1
 ld (a5), hl
; jp line5

line3e: ld hl, (a6)
 ld ix, a6
 ld de, 29182
 rst $18
 jr c, loop13
 call line4
 jp line3f
loop13: call random63_1
 ld (a6), hl
; jp line5

line3f: ld hl, (a7)
 ld ix, a7
 ld de, 29182
 rst $18
 jr c, loop14
 call line4
 jp line3g
loop14: call random63_1

page:26

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

 ld (a7), hl
 jp line5
line3g: jp line5
line4: ; BASIC Line 4
loop15: call random ; POSITION = 28672 + rnd(0-
255)
 ld b, 0
 ld c, a
 ld hl, 28672
 add hl, bc
 ld (ix), l
 ld (ix+1), h
 ret
line5: ld hl, (a8) ; BASIC Line 5
 ld ix, a8
 ld de, 29182
 rst $18
 jr c, loop5a1
 call line6
 jp line5b1
loop5a1:ld (hl), 32
 ld e, 32
 ld d, 0
 add hl, de
 ld (a8), hl
line5b1:ld hl, (a9)
 ld ix, a9
 ld de, 29182
 rst $18
 jr c, loop5b1
 call line6
 jp line5c
loop5b1:ld (hl), 32
 ld e, 32
 ld d, 0
 add hl, de
 ld (a9), hl
line5c: ld hl, (a10)
 ld ix, a10
 ld de, 29182
 rst $18
 jr c, loop5c
 call line6
 jp line5d
loop5c: ld (hl), 32
 ld e, 32
 ld d, 0
 add hl, de
 ld (a10), hl
line5d: ld hl, (a11)
 ld ix, a11
 ld de, 29182
 rst $18
 jr c, loop5d
 call line6
 jp line5e
loop5d: ld (hl), 32
 ld e, 32
 ld d, 0
 add hl, de
 ld (a11), hl
line5e: ld hl, (a12)
 ld ix, a12
 ld de, 29182
 rst $18
 jr c, loop5e
 call line6
 jp line5f
loop5e: ld (hl), 32
 ld e, 32
 ld d, 0
 add hl, de
 ld (a12), hl
line5f: ld hl, (a13)
 ld ix, a13
 ld de, 29182
 rst $18
 jr c, loop5f
 call line6
 jp line5g

loop5f: ld (hl), 32
 ld e, 32
 ld d, 0
 add hl, de
 ld (a13), hl
line5g: ld hl, (a14)
 ld ix, a14
 ld de, 29182
 rst $18
 jr c, loop5g
 call line6
 jp line5h
loop5g: ld (hl), 32
 ld e, 32
 ld d, 0
 add hl, de
 ld (a14), hl
line5h: ld hl, (a15)
 ld ix, a15
 ld de, 29182
 rst $18
 jr c, loop5h
 call line6
 jp line5i
loop5h: ld (hl), 32
 ld e, 32
 ld d, 0
 add hl, de
 ld (a15), hl
line5i: ld hl, (a16)
 ld ix, a16
 ld de, 29182
 rst $18
 jr c, loop5i
 call line6
 jp line5j
loop5i: ld (hl), 32
 ld e, 32
 ld d, 0
 add hl, de
 ld (a16), hl
line5j: jp line1
line6: ; BASIC Line 6
loop17: call random32
 ld hl, 28671
 add a, l
 ld l, a
 ld (ix), l
 ld (ix+1), h
 ret
random: push hl
 push bc
 push de
 ld hl,(seed1)
 ld b,h
 ld c,l
 add hl,hl
 add hl,hl
 inc l
 add hl,bc
 ld (seed1),hl
 ld hl,(seed2)
 add hl,hl
 sbc a,a
 and %00101101
 xor l
 ld l,a
 ld (seed2),hl
 add hl,bc
 ld a, l
 pop de
 pop bc
 pop hl
 ret
random32: push hl ; 0-32 ONLY. Result in A.
 push bc
 push de
r_loop0: ld hl,(seed3)
 ld b,h
 ld c,l

page:27

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

 add hl,hl
 add hl,hl
 inc l
 add hl,bc
 ld (seed3),hl
 ld hl,(seed4)
 add hl,hl
 sbc a,a
 and %00101101
 xor l
 ld l,a
 ld (seed4),hl
 add hl,bc
 ld a, l
 cp 32
 jr nc, r_loop0
 pop de
 pop bc
 pop hl
 ret

random63_1: ; 0-63 ONLY. Result in A.
 push bc
 push de
 push hl
r_loop1: ld hl,(seed3)
 ld b,h
 ld c,l
 add hl,hl
 add hl,hl
 inc l
 add hl,bc
 ld (seed3),hl
 ld hl,(seed4)
 add hl,hl
 sbc a,a
 and %00101101
 xor l
 ld l,a
 ld (seed4),hl
 add hl,bc
 ld a, l
 cp 63
 jr nc, r_loop1
 pop hl
 ld (hl), a
 ld e, 32
 ld d, 0
 add hl, de

pop de
 pop bc
 ret

random63_2: ; 0-63 ONLY. A = A + 64. Result in A.
 push hl
 push bc
 push de
r_loop2: ld hl,(seed3)
 ld b,h
 ld c,l
 add hl,hl
 add hl,hl
 inc l
 add hl,bc
 ld (seed3),hl
 ld hl,(seed4)
 add hl,hl
 sbc a,a
 and %00101101
 xor l
 ld l,a
 ld (seed4),hl
 add hl,bc
 ld a, l
 cp 63
 jr nc, r_loop2
 add a, 64
 pop de
 pop bc

 pop hl
 ret

seed1: defb 1234
seed2: defb 5678, 0
seed3: defb 8765
seed4: defb 4321, 0

a1: defw 0
a2: defw 0
a3: defw 0
a4: defw 0
a5: defw 0
a6: defw 0
a7: defw 0
a8: defw 0
a9: defw 0
a10: defw 0
a11: defw 0
a12: defw 0
a13: defw 0
a14: defw 0
a15: defw 0
a16: defw 0

page:28

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

Another beaut little listing that creates a half-cool effect that has been floating around in the back of my
mind since the early days of learning BASIC. Very incredibly mind-numbingly finger-nail-bitingly slow!
So, we’ll speed it up a tad. Currently at 131 bytes for the BASIC version and 162 bytes for the asm
version. Take away the VZ snapshot header and it is nearly on par. No doubt it can go way smaller,
though I’ve spent an hour on it already, and it will do me for this booklet.

The asm listing is (*) 1000 times quicker than the BASIC listing.
Reference (*) pure guestimation with absolute zilch science behind this fact

page:29

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

page:30

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

This particular BASIC to ASM example comes from the PDF book titled “10 PRINT
CHR$(205.5+RND(1)); : GOTO 10”. Yes, that is the name of it. Written by ten fellows, and is
available as a free download at https://10print.org/ It is a good read regarding the philosophical side of
programming.

It is written towards to Commodore 64, and produces the following cool screen effects.

That’s great! But it doesn't work on the VZ. We need some little changes.

page:31

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

 Fig. Example 1 Fig. Example 2

Running these the first thing to notice is how slow they run!. Converting these from BASIC to ASM, the
first thing that you will notice is that you will find it hard to view, because it now runs just way too
quickly.

First thing is to break it down into its parts. We need to print two characters randomly on the screen,
and then just start over again. The printing can be done by the ROM print-single-character routine at
$33A after loading register A with whichever random character that we wish to display. Second thing we
need to do is to work out a (working) random number generator. As per comment (#5) below, simply
using one big iteration is not going to work with the single-character-display. We either need to LOOP
and display 64 characters, display a <CR> then start again, OR, we could have one big iteration, have a
counter from 1 to 64. And a jump back to the start. If the counter hits 65, then we reset the counter,
display a <carriage Return> and jump back to the start. I find the former idea nicer.

A simple random number generator that will work for this example is the following:

Register A will be a rough and ready random number between 0 to 255. The random sequence is fairly
poor though, and only after a few hundred iterations, the so called random-number-sequence will start
over again.

Next up is the displaying of the alternate characters. In this case, the two slashes. Forward slash and
back slash. Characters 47 and 92 and 220 and 239 for the inversed slashes. We need to load these into
register A, call the rom routine, and by magic they are displayed on the screen.

Finally we need a 1 to 64 Loop to print 64 characters, display a single carriage return, and start over
again, to get around our little display issue mentioned in (#5).

page:32

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

Example 1

Example 2 - listing for inversed Slashes demo example.

page:33

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

Or, by changing the characters, we can turn it into a proper looking maze for the VZ:

Example 3

The last example is a maze generator written by Emerson Costa for the MMC1000 which is another Z80
and 6847 computer. Adding in percentage signs to BASIC variables declares the variables to be integers
– by default they are declared as floats. It does quicken things up a tad by the interpreter.

We can slightly re-arrange the BASIC listing to remove the two gosubs and place them onto the same
callee IF lines – as per the second basic listing below. The removal of the percentage signs was done so
just purely to clean up the layout of the code. Percentage signs everywhere seems to add unnecessary
viewing complexity. Add them in later if wanting to. One thing to note is that the BASIC listing is around
321 bytes, whilst the assembly near-equivalent is 246 bytes which is based on the second BASIC listing.
The difference in speed between either of the two BASIC listings to the ASM is rather mind blowing fast.
With a quick copy & paste, and assemble with PASMO or SJASM with RBINARY, you should be viewing
this within no time.

page:34

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

10 DIM A(2,33):A1=0:A2=1:A3=2:C=1
20 FOR X = C TO 32STEP 2: Z=RND(2)
30 IFZ=1, A(A2,X-1)=12:A(A2,X)=12:A(A2,X+1)=8 : NEXT
40 IFZ=2, A(A1,X)=A(A1,X)OR10:A(A2,X)=10:A(A3,X)=8:NEXT
50 FORX=1TO32:PRINTCHR$(128ORA(A1,X));:A(A1,X)=0:NEXTX
60 AA=A1:A1=A2:A2=A3:A3=AA:C=3-C: GOTO 20

 ORG $8000
 LD DE, A0 ; Fill 4x 33 byte arrays with zero.
 LD b, 132 ; This saves a lot of unncessary "DEFB 0" below.
 LD A,0 ; Setting A=0 for a 132 loop of 'LD (DE), 0'
 LDIR ; Loop and repeat for 132 times.
 LD C, 1 ; Reg C = var C
ST0: LD B, C ; Reg B = var X
LOOP1:LD E, B ; Reg E = array offset 0-32.
RANDOM2:PUSH BC ; Z=RND(2). Output: RND 0-3 in Reg A.
SEED1 EQU $+1
 ld hl,1234
 ld b,h
 ld c,l
 add hl,hl
 add hl,hl
 inc l
 add hl,bc
 ld (SEED1),hl ; use self mod code to store another random seed
SEED2 EQU $+1
 ld hl,5678
 add hl,hl
 sbc a,a
 and %00101101
 xor l
 ld l,a
 ld (SEED4),hl ; use self mod code to store another random seed
 add hl,bc
 ld a, l ; Reg A = RND(255)
 and 3 ; Reg A = RND(3)
 POP BC
LINE30:CP 2 ; IF Z=2 THEN
 JR Z, LINE40 ; goto LINE40
 LD IX, A2 ; ELSE LINE30. IX="A2 array"
 LD D, 0
 ADD IX, DE ; DE=array offset from for-to-next

page:35

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

 LD (IX), 12 ; A(A2,X)=12
 DEC IX ; x=x-1 --> X-1
 LD (IX), 12 ; A(A2,X-1)=12
 INC IX ; x=x+1 --> back to X
 INC IX ; x=x+1 --> X+1
 LD (IX), 8 ; A(A2,X+1)=8
 JP line30b
LINE40:LD IX, A1 ; IX=A1 array.
 ADD IX, DE ; DE=array offset from for-to-next
 LD A, (IX)
 OR 10
 LD (IX), A ; A(A1,X)=A(A1,X) OR 10
 LD IX, A2 ; IX=A2 array
 ADD IX, DE
 LD (IX), 10 ; A(A2,X)=10
 LD IX, A3 ; IX=A3 array.
 ADD IX, DE
 LD (IX), 8 ; A(A3,X)=8
line30b:INC B ; 2x ‘INC B’ = STEP2 from for-to-next
 INC B
 LD A, B ; comparison for loop
 CP 32 ; If > 32
 JR C, LOOP1 ; then jump
LINE50:LD IX, A1 ; set A1 array
 LD B, 32 ; FORX=1TO32
 PUSH DE ; store DE
 LD DE, $7000 + 480-32 ; Get destination for POKE
Loop2: LD A, (IX) ; load IX to OR yellow blocks. Begin of FOR-TO-NEXT loop
 OR 128+16 ; +16 for POKE blocks
 LD (DE), A ; POKE@DE,A1-blocks
 INC E ; INC POKE offset
 LD A, 0
 LD (IX), A ; A(A1,X)=0
 INC IX ; inc A1 array offset.
 DJNZ loop2 ; NEXTX. End of FOR-TO-NEXT loop
 POP DE ; restore DE
 LD A, 13 ; FORCE a <CR> at each offset 32
 CALL $033A ; Write out character <CR>
LINE60:LD B, 33 ; AA = A1
 LD IX, A0 ; destination
 LD IY, A1 ; source
 CALL move ; move array
 LD B, 33 ; A1 = A2
 LD IX, A1 ; destination
 LD IY, A2 ; source
 CALL move ; move array
 LD B, 33 ; A2 = A3
 LD IX, A2 ; destination
 LD IY, A3 ; source
 CALL move ; move array
 LD B, 33 ; A3 = AA
 LD IX, A3 ; destination
 LD IY, A0 ; source
 CALL move ; move array
 LD A, 3 ; C=3-c

page:36

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language and other waffle.

 SUB c
 LD C, A
 JP ST0 ; GOTO 20
move: LD A, (IY) ; move array
 LD (IX), A ; IY=source
 INC IX ; IX=destination.
 INC IY
 DJNZ move ; Loop B number of times.
 ret
 DEFB 0
A0 EQU $
A1 EQU $ + 33
A2 EQU $ + 66
A3 EQU $ + 99

CONCLUSION

None. This is not one of those books!

References
Google. ‘Z80 opcodes’, ‘Z80 flags’, ‘INC IX’, ‘porn’, ‘ten-liner competition’.

VZ200 Technical Reference Manual.

Zen and the art of Metaphysics of Quality applied to VZ BASIC to Assembly Language conversion and
other waffle, page 10.

VZ300 Technical Reference Manual.

